Introducing an old calculating instrument in a new technologies environment: a praxeological analysis of students' tasks using different registers



The Chinese abacus is the resource presented in this paper, to teach and learn number sense and place-value system at primary level. The Chinese abacus can be material, virtual (software) or drawn on a worksheet. We present three tasks and analyse them in term of techniques and relative knowledge. We show how these tasks can be solved by students in different registers (material, software, paper-and-pencil, fingers, oral) which is important for both students' understanding and teachers' activity.


Material and virtual resources, praxeology, task, technique, technology, register, number sense, place-value system, Chinese abacus


Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3, 205-224.

Artigue, M. (2009). Rapports et articulations entre cadres théoriques: le cas de la théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 29(3), 305-334.

Asher, M. (2002). Mathematics elsewhere: an exploration of ideas across cultures. Princeton: Princeton University Press.

Baccaglini-Frank, A., & Maracci, M. (2015). Multi-touch technology and preschoolers’ development of number-sense. Digital Experiences in Mathematics Education, 1(1), 7 27.

Bartolini, M. G., & Martignone, F. (2014). Manipulatives in Mathematics Education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 365 372). Dordrecht: Springer Netherlands.

Barton B. (2008). The language of mathematics. Telling mathematical tales. New York: Springer.

Block, D., Nikolantonakis, K., & Vivier, L. (2012). Registres et praxis numérique en fin de première année de primaire dans trois pays. Annales de Didactique et de Sciences Cognitives. 17, 59-86.

Bueno-Ravel, L., & Harel, C. (2016). Le calcul mental à l'école: apports du boulier chinois. MathemaTICE, 51. Retrieved from

Chevallard, Y. (1992a). Concepts fondamentaux de la didactique: perspectives apportées par une approche anthropologique. Recherches en Didactique des Mathématiques, 12(1), 73-112.

Chevallard, Y. (1992b). Fundamental concepts in didactics: perspectives provided by an anthropological approach. In R. Douady & A. Mercier (Eds), Research in Didactics of Mathematics (pp.131-167). Grenoble: La Pensée Sauvage.

Chevallard, Y. (1999). L'analyses des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221-266.

Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In M. Bosch (Ed.), Proceedings of CERME 4 (pp. 21-30). Barcelone: Fundemi IQS.

Chevallard, Y. (2007) Readjusting didactics to a changing epistemology. European Educational

Research Journal, 6(2), 131-134.

Duval, R. (1996). Quel cognitif retenir en didactique des mathématiques? Recherches en Didactique des Mathématiques, 16(3), 349-382.

Duval, R. (1998). Signe et objet (I): trois grandes étapes dans la problématique des rapports entre représentation et objet. Annales de Didactique et de Sciences Cognitives, 6, 139-163.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of Mathematics. Educational Studies in Mathematics, 61(1), 103 131.

Gerdes, P. (2009). L'ethnomathématique en Afrique. Maputo: CEMEC.

Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199-218.

Gueudet, G., Bueno-Ravel, L., & Poisard, C. (2014). Teaching Mathematics with technology at the kindergarten level: resources and orchestrations. In A. Clark-Wilson, O. Robutti & N. Sinclair (Eds), The Mathematics teacher in the digital era: an international perspective on technology focused professional development (pp. 213 240). Dordrecht: Springer Netherlands.

Guin, D., Ruthven, K., & Trouche, L. (2005). The didactical challenge of symbolic calculators: turning a computational device into a mathematical instrument. Boston, MA: Springer US.

Kervran, M., Poisard, C., Le Pipec, E, Sichler, M., & Jeudy-Karakoç, N. (2015). Langues minoritaires locales et conceptualisation à l’école : l’exemple de l’enseignement des mathématiques en breton. In M. Kervran & P. Blanchet (Dir.), Langues minoritaires locales et éducation à la diversité des dispositifs didactiques à l'épreuve (pp. 65-82). Paris: L'Harmattan.

Lagrange, J.-B. (2005). Using symbolic calculators to study Mathematics. In D. Guin, K. Ruthven & L. Trouche (Eds), The didactical challenge of symbolic calculators: turning a computational device into a mathematical instrument (pp. 113 135). Boston, MA: Springer US.

Maschietto, M., & Trouche, L. (2010). Mathematics learning and tools from theoretical, historical and practical points of view: the productive notion of mathematics laboratories. ZDM, 42(1), 33 47.

Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: the pascaline and Cabri Elem e-books in primary school mathematics. ZDM, 45(7), 959 971.

Poisard, C. (2005a). Les objets mathématiques matériels, l'exemple du boulier chinois. Petit x, 68, 39-67.

Poisard, C. (2005b). Ateliers de fabrication et d’étude d’objets mathématiques, le cas des instruments à calculer. Thèse de Doctorat, France, Université de Provence, Aix-Marseille I.

Poisard, C., & Gueudet, G. (2010). Démarches d’investigation : exemples avec le boulier virtuel, la calculatrice et le TBI. Journées mathématiques de l’INRP, Lyon, France.

Poisard, C., Gueudet, G., & Bueno-Ravel, L. (2011). Comprendre l’intégration de ressources technologiques en mathématiques par des professeurs des écoles. Recherches en Didactique des Mathématiques, 31(2), 151-189.

Poisard, C., Kervran, M., Le Pipec, E., Alliot, S., Gueudet, G., Hili, H., Jeudy-Karadoc, N., & Larvol, G. (2014). Enseignement et apprentissage des mathématiques à l'école primaire dans un contexte bilingue breton-français. Revue Spirale, 54, 129-150.

Poisard, C., Riou-Azou, G., D'hondt, D., & Moumin, E. (2016). Le boulier chinois : une ressource pour la classe et pour la formation des professeurs. MathemaTICE, 51. Retrieved from

Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical meanings. Educational Studies in Mathematics, 70(2), 111 126.

Riou-Azou, G. (2014). La construction du nombre en grande section de maternelle avec un boulier chinois virtuel. MathemaTICE, 40.

Rau, P.-L. P., Xie, A., Li, Z., & Chen, C. (2016). The cognitive process of Chinese abacus arithmetic. International Journal of Science and Mathematics Education, 14(8), 1499 1516.

Sun, X., Berinderjeet, K., & Novotna, J. (2015). Primary Mathematics study on whole numbers, Conference proceedings of ICMI Study 23. Macao, China: University of Macau.

Trouche, L. (2005). An instrumental approach to Mathematics learning in symbolic calculator environments. In D. Guin, K. Ruthven, & L. Trouche (Eds), The didactical challenge of symbolic calculators: turning a aomputational device into a mathematical instrument (pp. 137 162). Boston, MA: Springer US.

Verillon, P., & Rabardel, P. (1995). Cognition and artefacts: a contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10, 77-102.

Zaslavsky, C. (1973/1999). Africa counts. Number and pattern in African cultures. Third edition. Chicago: Lauwrence Hill Books.

Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.



Re S M ICT E , ISSN: 1792-3999 (electronic), 1791-261X (print)

Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.

Πασιθέη: Ηλεκτρονικές Επιστημονικές Δημοσιεύσεις Ανοικτής Πρόσβασης, 2008-2012, Βιβλιοθήκη & Κέντρο Πληροφόρησης - Πανεπιστήμιο Πατρών