Using time by students and teachers: obstacles and explanatory register in coupling biology-geology

YOUSSEF BOUGHANMI

Abstract


In this paper, we shall discuss, theoretically, obstacles and explanatory register to understand how to build a problem in science, especially when using time in coupling geology and biology. We shall also explain time in its geologic and didactic approaches. We try to understand the incommensurability of time and its infinitesimal division when using it to demonstrate a relationship between biology and geology. In literature, time is divided into three types: deep, sagittal or cyclic. Which types of time is used by students and teachers? Educationally, we seek to answer these questions: which obstacles students and teachers are faced with when they use to a type of time? Do students and teachers work in the same explanatory register when they relate time to other concepts

Keywords


Geology, Biology, time, explanatory register, obstacles

References


Ault, C. R. (1981). Children’s concepts about time no barrier to understanding the geologic past. Doctoral dissertation, Cornell University, Ithaca, USA.

Ault, C. R. (1982). Time in geological explanations as perceived by elementary school students. Journal of Geological Education, 30, 304-309.

Bachelard, G. (1938/1970). La formation de l’esprit scientifique. Paris: Vrin.

Bachelard, G. (1949/ 2004). Le rationalisme appliqué. Paris: P.U.F.

Boughanmi, Y. (2009). Obstacles à la problématisation du temps dans une approche interdisciplinaire : l’explication de quelques phénomènes naturels par des élèves et de futurs enseignants tunisiens. Doctoral Thesis, University of Burgundy, France.

Bucher, W. H. (1941). The nature of geological inquiry and the training required for it. New York: A.I.M.E.

Burchfield, J. D. (1974). Darwin and the dilemmas of geological time. Isis, 65, 300-321.

Burchfield, J. D. (1998). The age of the Earth and the invention of geological time. In D. J. Blundell & A. C. Scott (Eds), Lyell: The past is the key to the present. Geological Society of London Special Publications, 143, 137-143.

Canguilhem, G. (1988). Idéologie et rationalité dans l’histoire des sciences de la vie. Paris: Vrin.

Celal Sengor, A. M. (2005). L’histoire de la tectonique depuis les temps les plus reculés jusqu’à l’apparition de la tectonique des plaques : une étude épistémologique. Cours collège de France, chaire internationale, 2004-2005.

Dodick, J., & Orion N. (2003a). Geology as an historical Science: its perception within science and the education System. Science & Education, 12(2), 197-211.

Dodick, J., & Orion, N. (2003b). Measuring student understanding of geological time. Science Education, 87(5), 708-731.

Fabre, M., & Orange, C. (1997). Construction des problèmes et franchissements d'obstacles. Aster, 24, 37-57.

Fraisse, P. (1982). The adaptation of the child to time. In W. Friedman (Ed.), The developmental psychology of time (pp. 113-140). New York: Academic Press.

Frodeman, R. (1995). Geological reasoning: Geology as an interpretive and historical science. GSA Bulletin, 107(8), 960-968.

Frodeman, R. (1996). Envisioning the outcrop. Journal of Geoscience Education, 44, 417-427.

Frodeman, R. (2000). Shifting plates. In R. Frodeman (Ed.), Earth matters: The Earth Sciences, Philosophy and the claims of the community (pp. 7-12). Upper Saddle River, NJ: Prentice Hall.

Friedman, W. (1978). Development of time concepts in children. In H. W. Reese & L. P. Lipsett (Eds), Advances in child development and behaviour, v. 12 (pp. 267–298). New York: Academic Press.

Galavotti, M. C. (1990). Explanation and causality: some suggestions from Econometrics. Science & Education, 9, 161-169.

Gayon, J. (1993). La biologie entre loi et histoire. Philosophie, 38, 30-57.

Gohau, G. (1995). Traquer les obstacles épistémologiques à travers les lapsus d'élèves et d'écrivains. Aster, 20, 21-41.

Gould, S. J. (1990). Aux racines du temps. Paris: Éditions Grasset.

Hempel, C. G. (1965). Aspects of scientific explanation and other essays in the philosophy of science. New York: Free Press.

Kuhn, T. S. (1962). La structure des révolutions scientifiques. Paris: Flammarion.

Le Pichon, X. (2003). My conversion to plate tectonics. In N. Oreskes (Ed.), Plate tectonics, an insider’s history of the modern theory of the earth. Cambridge Mass.: Westview Press.

Marques, L. F., & Thompson, D. B. (1997). Portuguese students’ understanding at age 10/11 and 14/15 of the origin and nature of the Earth and the development of life. Research in Science and Technology Education, 15, 29-51.

Martinand, J. L. (1995). Introduction à la modélisation. In Séminaire de didactique des disciplines technologiques 1994-1995 (pp. 7-19). Paris: Association Tour 123.

Mayer, V. J., & Armstrong, R. E. (1990). What every 17 year old should know about planet earth: The report of a conference of educators and geoscientists. Science Education, 74, 155-165.

Mayr, E. (1998). This is biology. The science of living world. Cambridge, Mass. & London: Harvard University Press.

Monchamp, A., & Sauvageot-Skibine, M. (1995). Du fixisme à la tectonique des plaques, et pourtant elles bougent. Aster, 20, 3-20.

Noonan-Pulling, L. C., & Good, R. G. (1999). Deep time: Middle school students’ ideas on the origins of earth and life on earth. Paper presented at the National Association for Research in Science Teaching annual meeting, Boston, MA.

Orange, C. (1999). Les fonctions didactiques du débat scientifique dans la classe : faire évoluer les représentations ou construire des raisons ? In ARDIST (Éd.), Actes des premières rencontres scientifiques de l’ARDIST: L’actualité de la recherche en didactique des sciences et des techniques (pp. 89-93). Cachan: ARDIST.

Orange, C. (2000). Idées et raisons: construction de problèmes, débats et apprentissages scientifiques en Sciences de la vie et de la Terre. HDR, Université de Nantes, France.

Orange, D. (2003). Utilisations du temps et explications en sciences de la terre par les élèves de lycée : Étude dans quelques problèmes géologiques. Thèse de doctorat, Université de Nantes, Nantes, France.

Orange-Ravachol, D. (2003). Utilisations du temps et explications en sciences de la terre par les élèves de lycée : étude dans quelques problèmes géologiques. Doctoral Thesis, Université of Nantes, France.

Orange-Ravachol, D. (2012). Didactique des sciences de la vie et de la terre entre phénomènes et évènements. Rennes: PUR.

Press, F., & Siever, R. (1998). Understanding the earth. New York: W. H. Freeman.

Ritger, S. D., & Cummins, R. H. (1991). Using student created metaphors to comprehend geological time. Journal of Geological Education, 39, 9-11.

Rowland, S. M. (1983). Fingernail growth and time distance rates in geology. Journal of Geological Education, 31, 176-178.

Salmon, W. C. (1971). Statistical explanation and statistical relevance. Pittsburgh: Pittsburgh University Press.

Schumm, S. (1991). To interpret the Earth: ten ways to be wrong. Cambridge: Cambridge University Press.


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

 


 

Re S M ICT E , ISSN: 1792-3999 (electronic), 1791-261X (print)

Laboratory of Didactics of Sciences, Mathematics and ICT, Department of Educational Sciences and Early Childhood Education - University of Patras.

Πασιθέη: Ηλεκτρονικές Επιστημονικές Δημοσιεύσεις Ανοικτής Πρόσβασης, 2008-2012, Βιβλιοθήκη & Κέντρο Πληροφόρησης - Πανεπιστήμιο Πατρών